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1. Taylor series

When #n-th derivative of f(x) exists in an interval, for x and a in the interval,
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Ex1. Taylor series of sinx (around x = 0)
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/. (x) is the first n-th parabola of the series, such as

3 3 5

f(x)=x, j@(x):x—%, L) =x—4,

31 5!
n=1 (y=x)
24 n=5
n=9
y=sin x
/A 0 /
2n - 0 i
2 n=3 n=7

sinx.ggb

Ex2. Taylor series of log(1+ x) (around x=0)
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2. Finding Taylor coefficients by your eyes.

Ex1. Taylor series of cosx (order 2 around x = 0)

Tangentto y = f(x) =cosx at (0,1)is "y =1". Therefore ‘cosx ~1 (Ist approx)‘

To find the 2nd approx, compare R, (x) = f(x) — (Ist approximation) = cosx —1 & ax’.
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"Near x = 0", the right one (a = 0.49) approximates f'(x) better than the left.
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Therefore you can tell " whenx~0, cosx—1~0.49x" ~ Exz S
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That is cosx ~ 14 =x* (2nd approx)
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[Rough Proof]
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Therefore , near x=0,
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That is,

cosx =1 —%xz (x = 0) | (2nd order Taylor series)




Ex2. Taylor series of f(x)=e" (order 3 around x =0) taylor.mn

I. Since tangenttoy =e" at (0,1)is y =1+x, | e~ 14+ x (Ist approx)|

II. To get the 2nd approx, compare R,(x) = f(x)— (Ist approx) = e* —(1+x) & ax’.

Nearx =0, y= %xz looks closestto R,(x),thus |e” ~1+4+x+ %xz (2nd approx)

III. To get the 3rd approx, compare R,(x) = f(x)—(2nd approx)=e” — [1 +x+ %xz]& ax’.

Nearx =0, y= %x3 looks closestto R,(x) ,thus|e* ~1+x+ %xz + %x3 (3rd approx)
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3. A proof of Taylor series

3-1. Caushy s mean-value theorem
If f(x), g(x) are differentiable on (a,b) and continuous on [a,b],
Then there exists & such that
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* On condition that, however, (f'(x))’ +(g'(x))> =0 A g(a) = g(b)

x=g(t =b

Geometrical interpretation c
{ y=f(t)

Considering a parametric curve:
Cix=g@),y=f() (a<t<b)

and points A(g(a), f(a)), B(g(b), f (b)) on C.

Then, the left side is the gradient of line AB,

while the right side is of tangent to C at P(g(€), f(£)).

Thus it means, " there exists a point P on C where

=a

tangent line to C is parallel to line AB." A

g(a).f(a))

3-2. A proof of Taylor’s theorem (n=28&3)

n=2:

Suppose /" (x) exists in an interval around a, then for x in the interval, let
R(x) = f(x)—{f(a)+ f(a)(x—a)}, G(x) =(x—a)’

Since R(a) =0, R'(a) =0, by Mean-Value theorem
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n=3:

Suppose /' (x) exists in an interval around a, then for x in the interval, let
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Since R(a) =0, R'(a) =0, by repetion of Mean-Value theorem
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