「問 II-1] 自然数 n に対し,第1象限において 不等式

$$nx$$
 y $x^{n} + \frac{1}{2}x^{n-1} + \frac{1}{3}x^{n-2} + \dots + \frac{1}{n}x + \frac{1}{n+1}$

の表す領域の面積を S(n) とする.極限値 $\lim_{n \to \infty} \frac{1}{n} S(n)$ を求めよ.

 $rac{1}{n}S(n)$ は,第1象限において 不等式

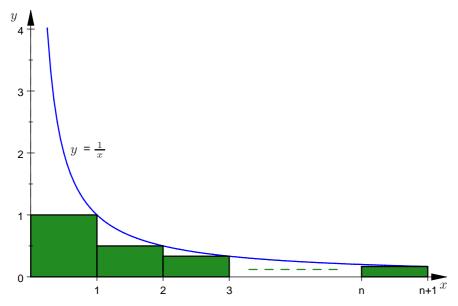
$$x$$
 y $\frac{1}{n}\left(x^{n} + \frac{1}{2}x^{n-1} + \frac{1}{3}x^{n-2} + \dots + \frac{1}{n}x + \frac{1}{n+1}\right)$

の表す領域の面積と等しい.これを T(n), さらに,上の不等式の右辺を,

$$f_n(x) = \frac{1}{n} \left(x^n + \frac{1}{2} x^{n-1} + \frac{1}{3} x^{n-2} + \dots + \frac{1}{n} x + \frac{1}{n+1} \right)$$

とおく.下図より,

$$f_n(1) = \frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} \right) \quad \frac{1}{n} \left(1 + \int_1^{n+1} \frac{1}{x} dx \right) = \frac{1 + \log(n+1)}{n}$$



ここで, $\lim_{x \to \infty} \frac{\log x}{x} = 0$ だから,十分大きいn に 対して,「 $f_n(1) < 1$ 」.

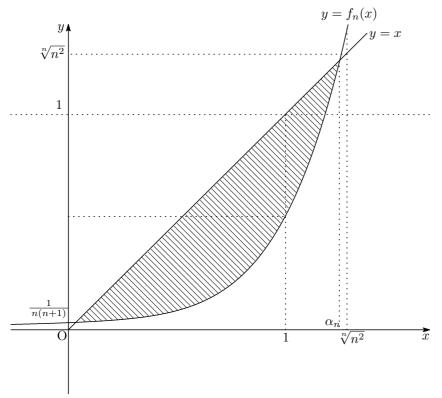
また「x>0 において $f_n(x)>\frac{1}{n}x^n$ 」だから,十分大きい n に 対して,

$$f_n(\sqrt[n]{n^2}) > \frac{1}{n}(\sqrt[n]{n^2})^n = n > \sqrt[n]{n^2}$$

よって「 $g_n(x) = f_n(x) - x$ 」とおくと,十分大きいn に 対して,

$$g_n(0) = f_n(0) > 0, \quad g_n(1) < 0, \quad g_n(\sqrt[n]{n^2}) > 0$$

さらに 「 $g_n''(x)=f_n''(x)>0$ 」より「 $y=g_n(x)$ のグラフは下に凸」となるから, $y=g_n(x)$ のグラフは,「0< x<1」と「 $1< x<\sqrt[n]{n^2}$ 」に於いて,x 軸と 1 回ずつ交わる.このうち大きい方の x 成分を α_n とおくと, $y=f_n(x)$ の概形は次のようになる.



ここで, $\log \sqrt[n]{n^2} = rac{2\log n}{n} \xrightarrow{n o \infty} 0$ 」だから, $\lim_{n o \infty} \sqrt[n]{n^2} = 1$ 」.故に,八サミウチより

$$\lim_{n \to \infty} \alpha_n = 1$$

よって , T(n) のうち , 直線 x=1 の右側の部分の面積は , $n\to\infty$ 」のとき , 0 に収束する . さらに ,

「
$$0$$
 x 1 において $f_n(x)$ $f_n(1)$ 」であり $\lim_{n \to \infty} f_n(1) = 0$

であるから , $y=f_n(x)$ と , x 軸 , y 軸 , x=1 で囲まれる面積は 「 $n\to\infty$ 」のとき , 0 に収束する . すなわち , T(n) のうち , 直線 x=1 の左側の部分の面積は $\frac{1}{2}$ に収束する .

以上から,

$$\lim_{n \to \infty} \frac{1}{n} S(n) = \frac{1}{2}$$

[参考] $\underline{\text{MuPAD}}$ で描いた $y=f_n(x)$ のビデオは $\underline{\text{cc}}$ にあります.シングルクリックして下さい.

$\overline{Comment}$

この問題では,グラフの概形をつかむことがポイントとなる.それには,

$$\log(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \log n + 1. \qquad \angle \qquad \lim_{x \to \infty} \frac{\log x}{x} = 0$$

という関係から 「 $f_n(1) \xrightarrow{n \to \infty} 0$ 」に気づくことが (私には) ポイントでした .