高校生のための MuPAD

- MuPAD Light 2.0 入門 -

^{ぉごせ しげき} 生越 茂樹

2002年4月19日

目次

1	基本	操作と,数字の操作	2
	1.1	MuPAD の立ち上げ方 (Windows の場合)	2
	1.2	入力の仕方	2
	1.3	ファイルの保存....................................	2
	1.4	ヘルプの見方	3
	1.5	加減乗除	3
	1.6	小数表示	4
	1.7	数学定数	4
	1.8	平方根 (√) の計算	5
	1.9	複素数の計算	6
		1.9.1 複素数の計算	6
		1.9.2 $\sqrt{-a} (a > 0)$ の表し方。	7
	1.10	その他の基本演算 (一部のみ)	7

1 基本操作と,数字の操作

注1)

1.1 MuPAD の立ち上げ方 (Windows の場合)

この節だけは Windows を使っている人向けです。でも,この節以外は Mac や Linux を使っている人でも, 基本的には同じだと思います。さて,スタートボタンからプログラムをたどって,'MuPAD Light'をクリッ クしてください。MuPAD を頻繁に使う人は,'MuPAD Light'の上で右クリックして,"コピーする"を選 ぶとショートカットが作られるので,次回からはそれをクリックするだけですみます。Mac や Linux は知 らないので...

1.2 入力の仕方

立ち上げると窓が開きます。'•' が点滅している右横に入力します。^{注2)}

このとき必ず半角で入力してください。MuPAD はドイツ生まれのソフトなので,日本語のフォントは読め ません。間に空白を入れても大丈夫ですが,途中で改行したいときは Shift key を押しながら, Return key を押してください。また MuPAD では大文字と小文字を区別しますから注意しましょう。さらに,残念な がら MuPAD では1度 Return key を押してしまった入力は変更できません。どうしても変更したいとき は,cut&paste で新たに次の行に入力するしかありません。直前に出力された式を,入力したいときは,% を使います。

1.3 ファイルの保存

💯 - MuPAD Light				
<u>Eile E</u> dit <u>V</u> iew <u>S</u> ession	<u>H</u> elp			
x B 🖀 🥌 🧾 🐼 🛄 編				

MuPAD で作ったファイルを保存するには, tool bar の一番左から'file'を選んで, 'SaveAs' をクリックします。残念ながら MuPAD Light のでは text file としてしか保存できません。次回も同じところから再開したいときは,その text file を開いて, MuPAD の window に, cut&paste (コピーして張り付け) します。^{注3)}

注1) この章の内容は,高校の教科書で言えば「実数や有理数の定義の章」みたいなもので,始めはよく解らなくとも流して読んでおけばいいです。できるだけ完全(?)なものをという,私の精神安定剤みたいなものです。

^{注2)} 最初の設定だと,赤色の丸に,赤色の文字になっているはずです。色を変えたいときは 窓の上の tool bar から, View → Options → Font → InputRegion とたどっていって,色を変えることが出来ます。OutputRegion では,結果の表示の色やフォ ントの大きさが変わります。

^{注3)} MuPAD Proの方は, notebookとして保存できるみたいです。(私は持っていないので,よく知りませんが...)

1.4 ヘルプの見方

Tool bar の一番右の Help から'Brouse Manual'を選択します。これは tool bar の下にある双眼鏡のマーク をクリックしても大丈夫です。英語で書いてありますから,英語の勉強にもなります。

1.5 加減乗除

a+b	a + b
<i>a</i> – <i>b</i>	a – b
$a \times b$	a * b
$\frac{a}{b}$	a/b
a^n	a ^ n

では,まず簡単な計算からやってみましょう。

+,-,×,÷,累乗はそれぞれ+,-,*,/, ^ を使います。式を入力したら,最後を「;」で終らせ,「Enter」を押 してください。^{注4)} 以下,計算したい数式を一番左に"?"をつけて表し,入力する式を●の横に書きます。 Enter を押すと >> の右横の式が表示されるはずですが, MuPAD Light は Windowsの標準フォントしか使 わないので実際に画面に表示される式は異なって見えるはずです。

【例】

計算したい数式	入力	出力
$3 + \frac{4}{3}$ lt?	• 3 + 4/3 ;	$>>\frac{13}{3}$
$3 - (2 \times 3)?$	• $3 - (2 * 3);$	>> -3
2 ³ は?	• 2 ^ 3;	>> 8
2 ⁵⁰ は?	• 2 ^ 50;	>> 1125899906842624
$\left(\frac{2}{3}\right)^{-2}$ lt?	• (2/3) ^ (-2);	$>> \frac{9}{4}$

(-2)のように括弧がいる事を忘れないでください。

$(2^3)^2$ lt?	• (2 ^ 3) ^ 2;	>> 64
2^{3^2} lt?	• 2 ^ (3 ^ 2);	>> 512
$2^4 \times 3$ lt?	• 2 ^ 4 * 3;	>> 48
$3 \div 2^3$ t ?	• 3/2 ^ 3;	$>>\frac{3}{8}$

このように,累乗は積や商より優先します。*MuPAD*では,文字式の計算も出来ます。このとき,乗法記号(*)は省略できないことに注意してください。

3x + 2 - (2x - 3)?	• $3 * x + 2 - (2 * x - 3);$	>> <i>x</i> + 5
$\frac{x+2}{2} - \frac{2x}{3}?$	• $(x+2)/2 - (2*x)/3$;	$>> \frac{-x+6}{6}$

^{注4)} このとき最後を「:」で終わらせると, MuPAD は計算はしますが表示はしません。

小数表示	float()
表示桁数をnへ変更	DIGITS := n

いま見たように MuPAD は電卓と違い 3 + $\frac{4}{3}$ = 4.33333333 としません。ちゃんと正確に答えを出してくれます。でも「MuPAD を電卓のように使いたい」というときは float(); というコマンドを使います。例えば次のようにします。

<u>4</u> の小数表示は?	• float(4/3);	1.333333333
<u>40</u> の小数表示は?	• float(40/3);	13.33333333
<u>400</u> の小数表示は?	• float(400/3);	133.3333333

全部の数字の数は,10個で同じですが,小数点の位置が移動しているのがわかりますね?実はこのような 小数点表示は「浮動小数」と呼ばれます。これが float()の名前の由来です。このように MuPAD のコマン ド名を覚えることによって英語の勉強にもなります?! MuPAD では最初の設定 (Default)では有効数字桁数 が 10 に設定されています。これを例えば 20 に変えるには DIGITS:=20; というふうにします。^{注5)} このと き,'='ではなく':='であることに注意してください。':=' は代入するときに使います。DIGITS:=20; は 「DIGITS という変数に 20 を代入せよ。」という意味です。^{注6)}

有効桁数を 20 桁にするには?	• DIGITS:=20;	>> 20
$\frac{4}{3}$ の小数表示?	• float(4/3);	>> 1.33333333333333333333333333

MuPAD では直前の結果の式を、'%'を使って表します。例えば,

$1 + \frac{4}{3}$?	• 1+4/3;	$>>\frac{7}{3}$
$1 + \frac{4}{3}$ の小数表示?	• float(%);	>> 2.3333333333333333333333333

% は直前の結果の式;⁷/₃ を表しています。また,以前に DIGITS:=20 と入力したのはまだ有効です。

1.7 数学定数

MuPAD では特に大切な定数の値は,次のように定まっています。注7)

π (円周率)	PI
<i>e</i> (自然対数の底)	E
i(虚数単位)	Ι
∞(無限大)	infinity

^{注5)} digit は桁という意味です

 $^{^{\}pm 6)}$ これに対し単なる'=' はプログラミングするときに , ' 判断' のとき使います。例えば , "if x = 20 then y := 0" なんて感じです。

^{注7)} e,i など, もし習っていない定数があれば, それは気にしなくても良い。また, 大文字と小文字の区別に注意してください。

float() は数学定数にも使えます。以下, DIGITS:=10; を入力したとします。

πの小数点表示は?	٠	float(PI);	>> 3.141592654
e の小数点表示は?	•	float(E);	>> 2.718281829

1.8 平方根 (√)の計算

注8)

平方根	sqrt()
平方根の単純化 (分母の有理化など)	radsimp()
(一般の式の) 単純化	<pre>simplify()</pre>
式の展開	expand()

^{注9)} 平方根は,sqrt()を使います。

$\sqrt{5}\sqrt{5}$ lt?	• sqrt(5)*s	sqrt(5);	>> 5
$2\sqrt{18} + \sqrt{50}$	• 2*sqrt(1	8)+sqrt(50);	>> 11 $2^{\frac{1}{2}}$

このように結果が累乗根の形で出ます。ちなみに a > 0, n, m が自然数のとき , $a^{\frac{1}{n}} = \sqrt[q]{a}, a^{\frac{m}{n}} = (\sqrt[q]{a})^m$ (定義) で $a^{\frac{1}{2}} = \sqrt{a}$ となります。(数)したがってこの結果は 11 $\sqrt{2}$ を表しています。(11 と $2^{\frac{1}{2}}$ の間の空白に注意してください.)次は積です。

√8 √14lは?	• sqrt(8)*sqrt(14);	$>> 2 2^{\frac{1}{2}} 14^{\frac{1}{2}}$
simplify()を使って簡単にしてみます。		
上の式を簡単にすると?	• simplify(%);	>> 2 $28^{\frac{1}{2}}$

少しは簡単になりました。もう一度やって見ます。

上の式を簡単にせよ? • simplify(%); >> 47¹/₂

やっと出来ました。 $\sqrt{8}\sqrt{14} = 4\sqrt{7}$ ですから合っています。今度は分母の有理化をやってみます。

 $\frac{1}{2+\sqrt{3}}|t|^2 \qquad \bullet \quad 1/(2+\operatorname{sqrt}(3)); \qquad >> \frac{1}{3^{\frac{1}{2}}+2}$

今度は, radsimp()を使って簡単にします。

分母を有理化すると? • radsimp(%); >> 2 - 3^{1/2}

 $\frac{1}{2+\sqrt{3}} = \frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})} = 2 - \sqrt{3}$ なので合っています。radsimp(),simplify()は二重根号をはずすときにも使えます。ただこの場合 case by case でどちらを使ったほうが良いかは簡単にはいえません。

$\sqrt{8+2\sqrt{15}}$ lt?	• sqrt(8+2*sqrt(15));	$>> 2^{\frac{1}{2}} \left(15^{\frac{1}{2}} + 4^{\frac{1}{2}}\right)^{\frac{1}{2}}$
二重根号をはずすと?	• radsimp(%);	$>> 2^{\frac{1}{2}} \left(15^{\frac{1}{2}} + 4^{\frac{1}{2}}\right)^{\frac{1}{2}}$

注8) この節は数 の指数関数を習ってからでも良い

注9) sqrt は "square root"の略で二重根号の意味です。(ちなみに squar は 2 乗を意味します。) simplify() は文字どうり「()内を simple にせよ」という意味で平方根のみならず様々な変形に使えます。radsimp() は "simplify radicals"の略で, radical はここ では'根'という意味です。'過激な'という意味ではありません。 expand は'引っ張る','伸ばす'という意味ですね。ここで は'展開する'という意味になります。

ぜんぜん変わっていませんね。今度は simplify() でやってみましょう。

二重根号をはずすと?	• simplify(%);	$>> 2^{\frac{1}{2}} \left(\frac{6^{\frac{1}{2}}}{2} + \frac{10^{\frac{1}{2}}}{2} \right)$
------------	----------------	--

 $2^{\frac{1}{2}}\left(\frac{6^{\frac{1}{2}}}{2} + \frac{10^{\frac{1}{2}}}{2}\right) = \sqrt{2}\left(\frac{\sqrt{6}}{2} + \frac{\sqrt{10}}{2}\right) = \sqrt{3} + \sqrt{5} = \sqrt{8 + 2\sqrt{15}}$ なので合っています。でも解りにくいですね。今度は次の例でやって見ます。

$\sqrt{12-6\sqrt{3}}$ l‡?	•	sqrt(12-6*sqrt(3));	$>> 6^{\frac{1}{2}}$	$(2-3^{\frac{1}{2}})$	$\Big)^{\frac{1}{2}}$
二重根号をはずすと?	• ;	simplify(%);	$>> 6^{\frac{1}{2}}$	$\left(\frac{6^{\frac{1}{2}}}{2}-\right)$	$\left(\frac{2^{\frac{1}{2}}}{2}\right)$

もう一度 $\sqrt{12-6\sqrt{3}}$ を入力した後で,こんどは radsimp() でやってみます。

二重根号をはずすと? • radsimp(%); >> 3 - 3^{1/2}

 $\sqrt{12-6\sqrt{3}} = \sqrt{3}\sqrt{4-2\sqrt{3}} = \sqrt{3}(\sqrt{3}-1) = 3 - \sqrt{3}\cdots(*)$ なので合っています。今度は radsimp() のほうが良かったみたいです。でも、ちょっと面倒だし、結果もみづらいですね。どうやら二重根号をはずすのは、MuPAD でやるのはやめた方が良いみたいです。自分でやって検算に MuPAD を使いましょう。(*)の結果を確認するのは、次のようにします。

 $(3 - \sqrt{3})^2 |$ **1**? • $(3 - \operatorname{sqrt}(3)) \land 2; >> (3 - 3^{\frac{1}{2}})^2$

展開しましょう.

上の式を展開すると?	• expand(%);	$>> 12 - 63^{\frac{1}{2}}$

確かに正しいようです。この expand()と simplify()は平方根の計算以外にもいろいろ使えます。

1.9 複素数の計算

虚数単位	Ι
<i>a</i> + <i>bi</i> (<i>a</i> , <i>b</i> 実数)の形に直す	rectform()
実数部分	Re()
虚数部分	Im()

注10)

1.9.1 複素数の計算

複素数の計算は, 虚数単位 iを Iと打つだけです。このとき必ず大文字の Iを使ってください。

i^2 は?	• I ^ 2;	>> -1
$(2+3i)^2$ l‡?	• $(2 + 3 * I) ^ 2;$	>> -5 + 12 <i>I</i>
$\frac{-i}{2+i}$ lt?	• (-I)/(2 + I);	>> -1/5 - 2/5I

^{注10)} この節は数 II の複素数を習った人向けです。rectform は, rectangular form の略で, rectangular というのは' 長方形の' とか' 四 角張った' という感じの意味です。

1.9.2 $\sqrt{-a}$ (*a* > 0) の表し方。

 $\sqrt{-3}$ などは $\sqrt{3}i$ でなく , $I3^{\frac{1}{2}}$ のようになります。また $\sqrt{-3}$ は sqrt(-3) のようにうちます。

$\sqrt{-3}$ lt?	• $sqrt(-3);$	>> $3^{\frac{1}{2}}I$
	54-6(5),	

 $-\sqrt{-4}$ | \ddagger • $-\operatorname{sqrt}(-4)$; >> -2I

1.10 その他の基本演算(一部のみ)

<i>x</i> の切り上げ	ceil(x)
<i>x</i> の切り捨て	floor(x)
x の四捨五入	round(x)
x の絶対値	abs(x)
{ <i>x</i> 1, <i>x</i> 2,・・・}の最大値	$\max(\mathbf{x}_1, \mathbf{x}_2, \cdots)$
{ <i>x</i> ₁ , <i>x</i> ₂ , …} の最小値	$\min(\mathbf{x}_1, \mathbf{x}_2, \cdots)$
nの階乗	n!または fact(n)
${}_{m}C_{n}$	binomial(m,n)
nの素因数分解	ifactor(n)
{ <i>n</i> ₁ , <i>n</i> ₂ , …} の最大公約数	$igcd(n_1, n_2, \cdots)$
{ <i>n</i> ₁ , <i>n</i> ₂ , …} の最小公倍数	$ilcm(n_1, n_2, \cdots)$
<i>m</i> ÷ <i>n</i> の商	m div n
<i>m</i> ÷ <i>n</i> の余り	m mod n

^{注12)}上の表で m,n などは整数で, x, x1 などは実数です。(abs は複素数にも使えます。)

3.5 の切り上げは?	• ceil(3.5);	>> 4
3.5 の切り捨ては?	• floor(3.5);	>> 3
3.5 の四捨五入は?	• round(3.5);	>> 4
-5の絶対値は?	• abs(-5);	>> 5
$\left\{\frac{5}{2}, 2.4, 3\right\}$ の最大値は?	• max(5/2,2.4,3);	>> 3
$\left\{\frac{5}{2}, 2.4, 3\right\}$ の最小値は?	• min(5/2,2.4,3);	>> 2.4
5! は?	• 5!;	>> 120
₅ C ₃ は?	• binomial(5,3);	>> 10
48 の素因数分解は?	• ifactor(48);	>> 2 ⁴ 3
{12,30,48}の最大公約数は?	• igcd(12,30,48);	>> 6
{12,30,48}の最小公倍数は?	• ilcm(12,30,48);	>> 240

注¹¹⁾ ただし、いつでも直してくれるわけではありません。そのような時、*a* + *bi*(*a*, *b* は実数)の形に直すには rectform()を使います。
注¹²⁾ ceil は、天井、, floor は、床、,round は、丸める、ですからそれぞれ、切り上げ、切り捨て、四捨五入の意味を持ってもおかしくないですね。 abs は、absolute value(絶対値)の略で fact は、factorial(階乗)、の略で,binomial は 2 項係数の意味。 integer は整数という意味なので、, ifactor で整数の因数分解ということです。 igcd は、greatest common divisor of integers、,ilcm は、least common multiple of integers、の略です。 div は divide の, mod は modulusの略です。

mod と div のみ使い方が異なります。

30 を 8 で割ったときの商は?	• 30 div 8;	>> 3
30 を 8 で割ったときの余りは?	• 30 mod 8;	>> 6