Set three solutions of the equation as z_1, z_2 and z_3 . Then,

$$\begin{cases} z_1 + z_2 + z_3 = 0 & \cdots \\ z_1 z_2 + z_2 z_3 + z_3 z_1 = -(3\sqrt{3} + 3i) & \cdots \\ z_1 z_2 z_3 = -\alpha & \cdots \end{cases}$$

Because z_1, z_2 and z_3 are collinear, $z_1 + z_2 + z_3 = 0$ implies that z_1, z_2 and z_3 are in the same line which goes through O(0). Thus, we can set

$$z_1 = a\omega, z_2 = b\omega, z_3 = c\omega$$
 ($|\omega| = 1, a, b, c$ are real numbers)

Then, by means of \bigcirc , \bigcirc and \bigcirc .

$$\begin{cases} a+b+c=0 & \cdots \mathbb{O}' \\ (ab+bc+ca)\omega^2 = -(3\sqrt{3}+3i) & \cdots \mathbb{O}' \\ abc \,\omega^3 = -\alpha & \cdots \mathbb{O}' \end{cases}$$

By means of ①'

$$ab + bc + ca = ab - (a + b)^2 = -(a^2 + ab + b^2) \le 0$$

If both sides are equal, then a = b = c = 0 but it contradicts \mathbb{Q}' , so ab + bc + ca < 0. Therefore, by means of \mathbb{Q}' .

$$\begin{cases} \arg\{(ab+bc+ca)\omega^2\} = 180^{\circ} + 2\arg\omega = \arg\{-(3\sqrt{3}+3i)\} = 210^{\circ} \\ \left|(ab+bc+ca)\omega^2\right| = -(ab+bc+ca) = \left|-(3\sqrt{3}+3i)\right| = 6 \\ \therefore \begin{cases} \arg\omega = 15^{\circ} \\ ab+bc+ca = -6 \end{cases} \cdots \textcircled{4}$$

Therefore, if we set abc = k, then a, b and c are the three real number solutions of the equation below.

$$t^3 - 6t - k = 0 \iff t^3 - 6t = k$$

Set $f(t) = t^3 - 6t$, then.

$$f'(t) = 3t^{2} - 6 = 3(t - \sqrt{2})(t + \sqrt{2})$$

$$t \quad \cdots \quad -\sqrt{2} \quad \cdots \quad \sqrt{2} \quad \cdots$$

$$f'(t) \quad + \quad 0 \quad - \quad 0 \quad +$$

$$f(t) \quad \nearrow \quad 4\sqrt{2} \quad \searrow \quad -4\sqrt{2} \quad \nearrow$$

Thus, if a, b, c are all real numbers, the range of k is

$$-4\sqrt{2} \le k \le 4\sqrt{2} \qquad \cdots \ \Im$$

By means of \mathfrak{J}' , if $abc \neq 0 \iff \alpha \neq 0$, then

$$\left\{ \begin{array}{l} |\alpha| = |abc| \\ \arg \alpha = 180^\circ + \arg\{abc\} + 3\arg \omega = 225^\circ + \arg\{abc\} \end{array} \right.$$

By means of \oplus , \oplus , if $\alpha \neq 0$, then.

$$0 < |\alpha| \le 4\sqrt{2}$$
, arg $\alpha = 225^{\circ} \text{ or } 45^{\circ}$

 $\alpha=0$ evidently satisfis the condition of the problem , so the existance regeon of α is the bold segment below.

