18

Set three solutions of (*) as x_1, x_2 and x_3 , then,

$$x_1 + x_2 + x_3 = 3\sqrt{3}$$

Therefore, if we set the conter of gravity of the equilateral triangle as $A(\alpha)$ then,

$$\alpha = \frac{x_1 + x_2 + x_3}{3} = \sqrt{3}$$

Here, if we translate the triangle so that α comes to O(0), three vertices of the triangle are

$$y_1 = x_1 - \sqrt{3}, y_2 = x_2 - \sqrt{3}, y_2 = x_2 - \sqrt{3}$$

Therefore,

$$x_1 = y_1 + \sqrt{3}, \ x_2 = y_2 + \sqrt{3}, \ x_3 = y_3 + \sqrt{3}$$

In accordance with that, $y_1 + \sqrt{3}$, $y_2 + \sqrt{3}$, $y_3 + \sqrt{3}$ are three solutions of (*),then the equation which has solutions of y_1 , y_2 and y_3 is,

$$(y + \sqrt{3})^3 - 3\sqrt{3}(y + \sqrt{3})^2 + a(y + \sqrt{3}) - 6\sqrt{3} = 0$$

$$\iff y^3 + (a - 9)y + (a - 12)\sqrt{3} = 0 \qquad \cdots \mathbb{O}$$

 $\{y_1, y_2, y_3\}$ forms a equalateral triangle whose center of gravity is O(0). Therfore \oplus must be the equation such that $y^3 = k$ (k is a real constant). Then,

$$a-9=0$$
 \therefore $a=9$ \cdots ans.

Substitute it to \oplus .

$$y^3 = 3\sqrt{3} \Longleftrightarrow y = \sqrt{3}, \sqrt{3}\omega, \sqrt{3}\omega^2$$

Therefore, the solutions of (*) are.

