

We define $f: z \mapsto \frac{1}{2+i}z$, and images of α , β produced by f as α' , β' respectively, then.

$$\begin{cases} \alpha' = t + t^2 i \\ \beta' = \frac{(s+si)(3+4i)}{2+i} = s + 3si \end{cases} \cdots \mathbb{D}$$

Therefore, if we set loci of α' and β' for C'_1 and C'_2 respectively, then the relations between real value : x and imaginary value: y are,

$$\begin{cases} C'_1; \quad y = x^2 \\ C'_2; \quad y = 3x \end{cases} \cdots \mathcal{Q}$$

Thus, if we define S' as the area enclosed by C'_1 and C'_2 , then

$$S' = \int_{3}^{0} (3x - x^{2})dx = -\int_{3}^{0} x(x - 3)dx = \frac{9}{2} \qquad \dots \Im$$

Here, set the angle θ as a figure below. Because *f* is a combination of the rotation of $(-\theta)$ and the enlargement by the factor of $\frac{1}{\sqrt{5}}$ using the O(0) as the center of rotation and enlargement, then,

$$S' = \left(\frac{1}{\sqrt{5}}\right)^2 S$$

Therefore the area required is

21

$$S = 5 \times S' = \frac{45}{2} \qquad \cdots ans.$$

